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IntroducFon	

ObjecFves	
•  Build	MM	disease	models	to	characterize	the	probabilis&c	

network	connec&ons	among	variables	from	the	mul&ple	
data	modali&es	generated	in	the	CoMMpass	study.	

•  Run	in	silico	simula&ons	of	the	MM	disease	models	to	
iden&fy	novel	interven&on	targets	for	modula&ng	MM	
clinical	endpoints.	

•  Build	a	soEware	interface	for	data	analysis	and	simula&on	
for	the	MMRF	and	CoMMpass	trial	collaborators.		

	

Mul&ple	myeloma	(MM)	is	an	incurable	disease	with	a	rapidly	
shiEing	treatment	landscape	that	highlights	the	importance	of	
a	deeper	understanding	of	drug	response	pathways	to	guide	
drug	development	and	enable	beIer	drug	targe&ng.			
	
CoMMpass	(NCT0145429)	[1],	a	study	by	the	Mul&ple	
Myeloma	Research	Founda&on	(MMRF),	collects	longitudinal	
data	of	newly	diagnosed	pa&ents’	responses	to	treatment.	
The	CoMMpass	Interim	Analysis	7	(IA7)	dataset	provides	
extensive	clinical	and	molecular	data	on	a	popula&on	of	
almost		800	enrolled	pa&ents.			
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IA7	dataset	includes	clinical	measurements	(demographics,	
labs,	treatment	informa&on,	survival,	etc),	soma&c	single	
nucleo&de	variants	(SNV),	structural	variants,	soma&c	copy	
numbers	(SCNV),	and	RNAseq	gene	expression.		
	
The	final	dataset	aEer	preprocessing	had	452	pa&ents,	and	
28,200	variables.	

Preprocessing:	
•  SNVs	were	first	filtered	with	Strelka,	MuTect,	and	Seurat	and	

then	aggregated	into	gene	region	burden	scores.	
•  mRNA		variables	with	zero	expression	in	majority	of	samples	

were	removed.	
•  SCNVs	were	segmented	with	the	CBS	algorithm.		

The	GNS	Healthcare	REFS™	
(Reverse	Engineering,	Forward	
Simula&on)	machine	learning	
plaqorm	uses	well	documented	
mathema&cal	techniques	to	infer	
causal	rela&onships	[2]	in	high	
dimensional	datasets	constrained	
by	a	minimal	set	of	biological	
considera&ons	but	otherwise	
en&rely	de	novo.		
	

SNV	

3"

Set$Values$in$BioModel™" Predict$X$
In$baseline$and$knockdown$

Condi:ons"

X$
Under$
baseline$
Gene$Y$

1"

1"

…"

0"

X$
Under$
Gene$Y$

Knockdown$

1"

1"

…"

1"

Baseline$
vs.$

Knockdown"

65$ Male$ 10.5$ ??$

65$ Male$ 7.2$ ??$

Compare$X$
In$Baseline$vs.$Knockdown$

Condi:ons"

Age$ Sex$ Gene$Y$ X$

0$ 1$

0$ a" b"

1$ c" d"

-  Perturbed	variable	set	to	5th		or	95th		quan&le	of	the	range	observed.	
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Response	Assessment:	first	treatment	response	that	lasts	at	least	1	year	before	a	
progressive	disease.	
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Simula&ons	on	this	ensemble	are	then	developed	to	find	
which	variables	are	poten&al	drivers	of	the	outcomes.	

To	capture	variability	in	data	and	inference	and	to	
dis&nguish	confident	predic&ons	from	incidental	ones,	
REFS™	returns	an	ensemble	of	models	that	are	all	
consistent	with	the	observed	disease	biology.			

•  REFS	infers	that	RN7SK	drives	
(inhibits)	DRA	

•  RN7SK	inhibits	CDK9	
•  PMID:	11713533	

•  Ac&on	similar	to	CDC7/CDK9	
inhibitors,	e.g.	PHA-767491	
•  PMID:	24202326	

•  Known	MM	response	pathway	

•  The	MM	drug	AT7519	also	
inhibits	CDK9		and	it	is	
associated	to	tumor	growth	
inhibi&on,	and	prolonged	
survival).	
•  PMC:	3183744	

•  Stem	Cell	Transplant	(noted	as	BMT)	is	
oEen	a	front-line	MM	treatment.	

•  Drives	mul&ple	endpoints,	both	in	REFS	
model	and	in	terms	of	treatment	efficacy	


