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Multiple myeloma (MM) is an incurable disease with a rapidly IA7 dataset includes clinical measurements (demographics,
shifting treatment landscape that highlights the importance of labs, treatment information, survival, etc), somatic single

a deeper understanding of drug response pathways to guide nucleotide variants (SNV), structural variants, somatic copy
drug development and enable better drug targeting. numbers (SCNV), and RNAseq gene expression.

CoMMpass (NCT0145429) [1], a study by the Multiple The final dataset after preprocessing had 452 patients, and

Myeloma Research Foundation (MMRF), collects longitudinal 28,200 variables.

data of newly diagnosed patients’ responses to treatment. Preprocessing:

The CoMMpass Interim Analysis 7 (IA7) dataset provides » SNVs were first filtered with Strelka, MuTect, and Seurat and
extensive clinical and molecular data on a population of then aggregated into gene region burden scores.

almost 800 enrolled patients. * mRNA variables with zero expression in majority of samples

were removed.
* SCNVs were segmented with the CBS algorithm.

Selected Results

* Build MM disease models to characterize the probabilistic
network connections among variables from the multiple
data modalities generated in the CoMMpass study.

* Run in silico simulations of the MM disease models to
identify novel intervention targets for modulating MM
clinical endpoints.

* Build a software interface for data analysis and simulation
for the MMRF and CoMMpass trial collaborators.

Methodology
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To capture variability in data and inference and to

. . . . . . . .  Stem Cell Transplant (noted as BMT) is
distinguish confident predictions from incidental ones,

often a front-line MM treatment.
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Simulations on this ensemble are then developed to find
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