
• Drivers	of	High	Risk	and	Durable	Response	

• Network	structures	are	constrained	to	a	minimal	set	of	
biological	relations,	but	are	otherwise	de	novo.

Bayesian	Network	Models	of	Multiple	Myeloma:	Drivers	of	High	Risk	and	Durable	
Response

Fred	Gruber1,	Boris	Hayete1,	Jonathan	Keats2,	Kyle	McBride3,	Karl	Runge1,		Mary	DeRome4,	Sagar Lonial5,	Iya Khalil,	Daniel	Auclair4
1GNS	Healthcare,	2Translational	Genomics	Research	Institute,3Instat,	4Multiple	Myeloma	Research	Foundation,	5Department	of	Hematology		&	
Medical	Oncology,	Emory	University	School	of	Medicine.

Introduction

Data	Collection
The	CoMMpass	trial	(NCT0145429)	started	in	July	2011	and

includes	patients	from	the	United	States,	Canada,	and	the	
European	Union.	For	each	patient,	tumor	and	matched	
constitutional	 samples	are	analyzed	with	Long-insert	Whole	
Genome	Sequencing,	Whole	Exomme	Sequencing,	and RNAseq.	
Clinical parameters	are	colected	at	study	entry	and	every	three	
months	for	a	minimum	of	5	years.	

After	integrating	the	different	data	modalities		(somatic	
single	nucleotide	 variants	(SNV),	structural	variants,	somatic	
copy	numbers	(SCNV),	and	RNAseq	gene	expression)	we	
obtained	a	table	with	645	patients	samples,	and	30426	variables	
that	completely	characterize	the	molecular	and	clinical	traits	of	
each	patient.

In this study, we use the Multiple Myeloma Research
Foundation (MMRF) CoMMpass trial (NCT0145429) Interim
Analysis 9 (IA9) dataset of newly-diagnosedmultiple myeloma
(MM) patients to learn an ensemble of Bayesian networks in
order to elucidate important biological mechanism inMM.

We demonstrate that our approach finds a number of
known drug targets and identifies potentially novel ones.
These targets, in our simulations , affect a number of
treatment efficacy outcomes.
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We	have	applied	REFS™	[2],	our	state-of-the-art	Bayesian	causal	
inference	engine,	to	reverse-engineer	the	molecular	pathways	
that	most	likely	affect	treatment.
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• To	account	for	intrinsic	uncertainty	of	the	structure,	 we	used	
REFS	to	learn	an	ensemble	of	256	networks	representing	a	
statistical	sample	of	the	most	probable	structures	 that	explain	
the	data.	

Bayesian
Network	
Ensemble

Survival	Variables
• Parametric	models
• Exponential
• Weibull
• Right	censoring.

GeneralizedLinear	
Models
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Genetic	Stratification	 of	Tumor	Samples

Current	and	Future	Work
• Developing	patient	stratification	 algorithms	for	finding	
individual	treatment	effects	and	identifying	possible	
subpopulations.

• Determining	drivers	of	the	subpopulations	with	different	
treatment	effects.

“Treatment”	 Effects
• The	resulting	Bayesian	network	model	is	interrogated	by	
exhaustively	enumerating	the	effects	of	perturbations	 of	the	
variables	in	the	model	upon	outcomes	for	each	of	the	networks	in	
the	ensemble	[5].	

• This	approach	could	simulate,	for	example,	a	gene	knockdown	
experiment,	a	change	in	drug	treatment,	or	an	imposition	of	an	
enrollment	criterion	 upon	a	clinical	study.

	
Figure 2. Drivers of high risk.  The blue nodes represent strong drivers of the high risk (in red node). The width of an 
edge is a function of the frequency of that edge among all networks in the ensemble and is given by the number next to the 
edge if it is larger than 0.5. 
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Figure 3. Drivers of durable response. Blue nodes are the stronger drivers of the durable response (red node). The width 
of an edge is a function of the frequency of that edge among all networks in the ensemble and is given by the number next 
to the edge if it is larger than 0.5. 
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• General	Network	Properties

GOterms		associated	with	genes	that	are	causal	drivers	
of	the	outcome	in	at	least	40%	of	the		networks	up	to	4	
hops	away.

Drivers 	of	outcomes.	The	blue	nodes	represent	 strong	 drivers 	of	the	 outcome	
(red	 node).		The	width	 of	edges 	are	a	function	 of	the	frequency	 of	this 	edge	
among	all	networks 	 in	the	ensemble	and	is 	given	by	the	number	 next	to	the	
edge	if	it	is 	larger	than	 50%.

Bi-clustering	of	the	somatic	genetic	variants	with	the	largest	
outdegree.	Distance	weighted	by	outdegree.A	sample	of	top	genes,	SNV,	CNV,	and	structural	variants	with	large	

out-degree.	

Variable Description Type
WHSC1 Wolf-Hirschhorn	syndrome	candidate	1		location:	4p16.3	 Protein	Coding	Gene	Expression
ULK3 unc-51	like	kinase	3		location:	15q24.1	 Protein	Coding	Gene	Expression
KMT2D lysine	(K)-specific	methyltransferase	2D		location:	12q13.12	 Protein	Coding	Gene	Expression

FLI1
Fli-1	proto-oncogene,	ETS	transcription	factor		location:	
11q24.3	 Protein	Coding	Gene	Expression

NFKB2
nuclear	factor	of	kappa	light	polypeptide	gene	enhancer	in	B-
cells	2	(p49/p100)		location:	10q24.32	 Protein	Coding	Gene	Expression

LHX4 LIM	homeobox	4		location:	1q25.2	 Protein	Coding	Gene	Expression

RELA
v-rel	avian	reticuloendotheliosis	viral	oncogene	homolog	A		
location:	11q13.1	 Protein	Coding	Gene	Expression

MIR1302-9 microRNA	1302-9		location:	9p24.3	 NonCoding RNA	Expression
MIR4453 microRNA	4453		location:	4q31.3	 NonCoding RNA	Expression
RP11-1085N6.5 ENSID:	ENSG00000258776	type:	lincRNA	location:	14q22.3	 NonCoding RNA	Expression
RP5-1057J7.6 ENSID:	ENSG00000261326	type:	lincRNA	location:	1p36.12	 NonCoding RNA	Expression

SNV_IGHV2-70
Weighted	burden	score	SNV	in	immunoglobulin	heavy	variable	
2-70		location:	14q32.33 Somatic	SNV

SNV_DIS3
Weighted	burden	score	SNV	in	DIS3	mitotic	control	homolog	
(S.	cerevisiae)		location:	13q22.1 Somatic	SNV

SNV_IGLV2-8
Weighted	burden	score	SNV	in	immunoglobulin	lambda	
variable	2-8		location:	22q11.22 Somatic	SNV

SNV_NRAS
Weighted	burden	score	SNV	in	neuroblastoma	RAS	viral	 (v-ras)	
oncogene	homolog		location:	1p13.2 Somatic	SNV

SNV_ATP8B4
Weighted	burden	score	SNV	in	ATPase,	class	I,	type	8B,	
member	4		location:	15q21.2 Somatic	SNV

SNV_CCDC171
Weighted	burden	score	SNV	in	coiled-coil	domain	containing	
171		location:	9p22.3 Somatic	SNV

SNV_PTPN11
Weighted	burden	score	SNV	in	protein	tyrosine	phosphatase,	
non-receptor	type	11		location:	12q24.13 Somatic	SNV

SNV_TP53
Weighted	burden	score	SNV	in	tumor	protein	p53		location:	
17p13.1 Somatic	SNV

SNV_TTC40
Weighted	burden	score	SNV	in	tetratricopeptide repeat	
domain	40		location:	10q26.3 Somatic	SNV

SNV_DTX1
Weighted	burden	score	SNV	in	deltex	homolog	1	(Drosophila)		
location:	12q24.13 Somatic	SNV

cnv_focal_amp_15q24 Somatic	CN:	Focal	amplification	in	15q24 Somatic	CNV
cnv_broad_15q Somatic	CN:	Arm	level	event	at	15q Somatic	CNV
cnv_focal_amp_11q23 Somatic	CN:	Focal	amplification	in	11q23 Somatic	CNV
cnv_focal_del_3p24 Somatic	CN:	Focal	deletion	in	3p24 Somatic	CNV
t(11;14)(q13;q32) Translocation	t(11;14)(q13;q32) Somatic	Structural	Variants
dup(19)(q13) Tandem	duplication	dup(19)(q13) Somatic	Structural	Variants
t(4;14)(p16;q32) Translocation	t(4;14)(p16;q32) Somatic	Structural	Variants
dup(14)(q32) Tandem	duplication	dup(14)(q32) Somatic	Structural	Variants
t(14;16)(q32;q23) Translocation	t(14;16)(q32;q23) Somatic	Structural	Variants

Important	Variables	 According	 to	Out-Degree

High	Risk

Durable	 Response
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