
•  REFS ensembles orient profiling measures into directed graphical networks 
composed of local structural models - i.e. generalized linear regressions – between 
upstream regulators and downstream effectors. 

 
•  Exhaustive interventional simulations – the numerical derivative of the underlying 

parametric models – are then computed to predict downstream effects of a 
hypothetical perturbation. 
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•  Polyglutamine expansion within exon 1 of HTT is associated with transcriptional 
dysregulation contributing to disrupted neurotransmission and  progressive loss of 
striatal medium spiny neurons.  

•  High resolution transcriptional and behavioral profiling across the murine Htt 
allelic series is designed to capture the most proximal effects of CAG expansion 
and resolve incipient molecular events across multiple tissues. 

•  We have applied GNS’ Reverse Engineering Forward Simulation (REFS) machine 
learning platform to statistically model and orient CAG à transcriptional à 
behavioral pathways using the allelic series profiling compendium. 

•  Exhaustive interventional simulations across REFS graphical models naturally 
identifies high confidence upstream/downstream transcriptional influences relative 
to CAG expansion over time. 
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Causal Inference via Reverse Engineering and 
Forward Simulation (REFS)

I.  Bayesian networks are graphical 

models that encode structural 
relationships among variables of 
interest [1].


II.  Structural models may encode causal 
relationships that reflect underlying 
mechanisms.




III.  GNS’ Reverse Engineering Forward 

Simulation (REFS) platform performs 
massively parallel inference of model 
structure at industrial scale [2-4]. 


IV.  REFS learns ensembles of model 
structures maximally supported by the 
data. 

Multimodal Data

•  Genetics 
•  Genomics 
•  Phenotyping 

Structure Learning

Ensemble sampling via 
massively parallel MCMC 
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In conjunction with CHDI, GNS has prepared a suite of model files and annotations 
for release via the HDinHD data portal: 
 
I.  Integrated and quality-controlled data frames for RNAseq, proteomics, and 

Psychogenics behavioral profiles from 15 tissue x age experiments. 

II.  Tabulated and annotated REFS simulation results from exhaustive pairwise 
interventional perturbations. 

III.  Cytoscape network files, including annotations and literature co-occurrence, for 
REFS simulation networks.  

IV.  OpenBEL namespaces and tissue-specific assertions for REFS simulations. 

V.  Hosted Rstudio access to GNS’ REFSfs R simulation package for custom 
ensemble topology queries and model simulations. 

Allelic Series Design and Profiling

To systematically distinguish early from late 
molecular HD phenotypes, CHDI has 
deeply profiled three cohorts of transgenic 
Htt mutants, comprising: 
 
I.  R6/2 transgenic HTT knock-in (n=208) 
II.  Cohorts (n=104/104 M/F) aged 2, 6,  

and 10 months 
III.  WT and mutant Q20, Q50, Q80,    

Q92, Q111, Q140, Q175 (n=8 each) 
IV.  Five tissues 

•  Striatum 
•  Cortex 
•  Hippocampus 
•  Cerebellum 
•  Liver 

V.  RNAseq (~20k transcripts) 
VI.  LC/MS Proteomics (~6k targets) 
VII. PsychoGenics Behavioral profiles 

Numerical Sampling of Model Ensembles


Figure 2. Graphical representation of a directed 
Bayesian network. Target nodes (children) are 
numerically predicted by their immediate 
upstream nodes (parents); e.g. C =α + β1B+ β2H 
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Figure 1. Experimental design and profiling 
platforms characterizing the mHtt allelic series. 

I.  In high dimensional domains (n << p), 
many models describe the data equally 
well. 

II.  Selection of a single network model 
underestimates prediction error. 

III.  Ensembles of network models -  
sampled from the posterior distribution 
P(Model | Data) - simultaneously capture 
parametric and structural uncertainty. 

IV.  A single ensemble naturally resolves 
high vs. low confidence structural 
relationships amongst variables of 
interest. 

Figure 3. REFS model construction via Monte 
Carlo sampling of the posterior model landscape. 
The confidence of a constituent edge XàY is 
obtained by averaging its appearance over the 
ensemble of most probable models. 

Figure 4. Normalized RNAseq expression profiles (left) are first oriented within a Bayesian network 
ensemble. A simulated response network (right) is subsequently derived from assessing significant 
pairwise perturbation effects across the ensemble. 

6 Month Striatal  Simulation Network


Bayesian Model Inference

 

P(Model | Data) ~ P(Data | Model) x P(Model)  
 
 
 
 
 
 
 
 
 

E[XàY] = Σi E[XàY | Data, Modeli ] x P(Modeli | Data) 

Posterior 
Landscape 

Posterior 
Distribution 

Marginal 
Likelihood 

Prior 
Distribution 

•  Importantly, REFS distinguishes co-
expression (correlation) from co-
regulation (conditional independence). 

 
•  Most co-expression does not imply 

direct regulation. 

•  Conditional independence relations 
effectively prune network structure for 
parsimonious regulatory models. 

I.  Large-scale Bayesian network inference provides a rigorous data-driven 
framework for transcriptional regulatory inference across the Htt allelic series. 

II.  REFS forward simulations exhaustively enumerate the downstream effects of 
hypothetical network interventions and statistically quantify the magnitude 
and uncertainty of predicted effects. 

III.  Simulation networks highlight a progressive expansion of CAG-mediated 
transcriptional dynamics, increasingly modulated by tissue-specific regulatory 
factors over time.  

IV.  Independent validation of inferred co-regulators of the primary CAG 
response identified both canonical (Htt, Creb1, Crebbp, Rest) and novel 
(Atn1, Kmt2d) targets for further investigation.  

V.  Ongoing work aims to identify proximal sub-networks relevant to: 
•  Investigational drug targets 
•  Human age-of-onset modifier genes 
•  Regulatory drivers of HTT somatic instability 

WT Q20 Q80 Q92 Q111 Q140 Q175 Theg ~ CAG + Scn4b + Gpx6  

Relative change: 
3.35 

 
T-test P-value: 

2.44e-11 

95th percentile 
(n=30) 

5th percentile 
(n=30) 
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Figure 6. Bifurcation plot characterizing the 
relationship between model frequency (x-axis) 
and marginal correlation (y-axis) among all gene 
pairs.  
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•  To validate and prioritize regulatory 
pathways inferred via REFS, simulation 
networks were subset for upstream 
regulators predicted to co-regulate CAG 
target genes. 

 
•  Predicted co-regulators were compared 

to those inferred from an Ingenuity 
regulatory analysis for the same CAG 
target gene set. 

 
•  Simulation networks recapitulate both 

canonical (HTT, CREB1, CREBBP, REST) 
and novel (ATN1, KMT2D) HD regulator 
across multiple tissues. 

CAG 

CAG  
co-regulators 

REFS Inferred  
Co-Regulator Striatum Cortex Cerebellum 

Htt <10-24 <10-8 <10-19 

Crebbp <10-3 0.01 <10-2 
Rest <10-2 0.02 <10-3 

Creb1 <10-5 <10-2 <10-11 

Atn1 <10-4 <10-2 <10-25 
Kmt2d <10-2 0.04 <10-2 

Table 1. Statistical significance (P-value) for literature-based inference (Ingenuity) of CAG target 
co-regulators identified via REFS simulation networks. 
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Figure 7. Co-regulators of the CAG transcriptional 
response inferred via REFS were compared against 
literature inferred regulators for an identical set of 
CAG target genes. 
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Figure 5. Exemplary REFS simulation for a constituent local model characterizing Theg regulation by 
CAG repeat length, Scn4b, and Gpx6 expression. Independent modulation of Gpx6 levels are predicted 
to positively regulate expression levels of Theg 


